Hypothesis

Evolutionary relationship between eukaryotic 29–32 S nucleolar rRNA precursors and the prokaryotic 23 S rRNA

Ross N. Nazar

Department of Botany and Genetics, University of Guelph, Guelph N1G 2W1, Canada

Received 13 May 1982

Evolution

Prokaryote

Eukaryote

rRNA

Nucleolar precursor

1. INTRODUCTION

When compared with prokaryotes, the cytoplasmic ribosomes of eukaryotes contain one additional RNA component, the 5.8 S rRNA. This molecule, which is hydrogen bonded to the high- M_r RNA component of the large subunit [1–3] is cotranscribed with the high- M_r rRNAs as part of a much larger precursor molecule [4–6], the 37 S nucleolar RNA in yeast [7]. Although its role in ribosome structure or function has not been established, the molecule is universal to all eukaryotic ribosomes and the sequence is highly conserved [8]; as much as 75% of the sequence is homologous between yeast and man [8].

Because the 5.8 S RNA sequence is so highly conserved, we postulated that it must be very important in ribosome function and, therefore, is probably present in prokaryotes, but simply not as a separate RNA molecule. In eukaryotes, the 5.8 S rRNA is cleaved from the 29-32 S nucleolar RNA precursor which is also a direct precursor of 25-28 S rRNA [4-7]. Since a number of studies [9–11] have indicated that, in rDNA, the 5.8 S RNA sequence is located in the 5'-end of the 29-32 S rRNA precursor sequence we suggested that a 5.8 S-like sequence may be found at, or near, the 5'-end of the prokaryotic 23 S rRNA. Indeed, when eukaryotic 5.8 S rRNA sequences were compared with the 5'-end sequence of the Escherichia coli 23 S rRNA a limited sequence homology was observed

If this sequence relationship is correct a second prediction can be made: that sequence homology

between the prokaryotic 23 S RNA molecule and the eukaryotic 25–28 S rRNA equivalent should not be observed when the 5'-ends are compared directly but should be present when the 2 molecules are compared with the 5'-end of the 25–28 S rRNA, 150–200 nucleotides in from the 5'-end of the 23 S rRNA.

2. SEQUENCE COMPARISON BETWEEN PRO-KARYOTIC 23 S rRNA AND EUKARYOTIC 25 S rRNA

A report on the complete nucleotide sequence of the 25 S rRNA from Saccharomyces cerevisiae ribosomes [13] permits the comparison with the 23 S rRNA from Escherichia coli [14,15]. When the 5'-ends of these molecules are aligned for maximum sequence homology they are not end-to-end, and there is an extra sequence of - 150 nucleotides at the 5'-end of the 23 S RNA molecule (fig.1). These are the same nucleotides shown to bear a limited sequence homology with the eukaryotic 5.8 S rRNA in [12]

A more detailed analysis of this sequence homology raises two important points which further support our model. The overall homology is relatively high (~ 75%) in the clearly comparable regions (residues 20–74 in the 25 S rRNA). This is significantly higher than the ~ 50–55% homology observed between 5 S RNAs from prokaryotes and eukaryotes and in the 5.8 S vs 23 S rRNA comparison [12]. However, the sequence homology is very low (~ 33%) or not significant in the region of

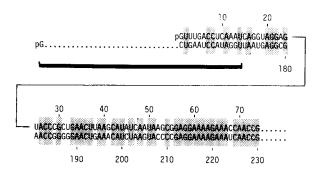


Fig. 1. A comparison of 5'-end regions of S. cerevisiae 25 S rRNA (upper line) with that of E. coli 23 S rRNA (lower line). The shaded areas indicate identical nucleotides; the solid line indicates the nucleotide sequence in E. coli 23 S rRNA, shown to bear a limited sequence homology with the eukaryotic 5.8 S rRNA [12]. The residues are identified by the numbers above and below the sequence.

overlap (residues 157–171 in the 23 S rRNA) suggested to be homologous with the 5.8 S rRNA sequence [12].

3. CONCLUSION

Sequence comparisons between eukaryotic 5.8 S rRNAs, the *E. coli* 23 S rRNA and the yeast 25 S rRNA suggest that the mature prokaryotic 23 S rRNA is comparable to the nucleolar 29–32 S rRNA precursor of eukaryotic organisms. Apparently, in the course of evolution, additional processing, acquired by eukaryotes or lost by prokaryotes, cleaves the prokaryotic 23 S RNA sequences into its eukaryotic equivalents. The degree of homology between the eukaryotic 5.8 S RNA sequence and its prokaryotic equivalent is somewhat lower than between the high- $M_{\rm r}$ RNA components. It is

attractive to speculate that these changes may be required for 5.8 S RNA function or structure as an independent molecule. Again, the function of the eukaryotic 5.8 S rRNA will have to be determined before this can be tested experimentally.

REFERENCES

- [1] Forget, B.G. and Weissman, S.M. (1967) Nature 213, 878-882.
- [2] Pene, J.J., Knight, E. jr and Darnell, J.E. jr (1968) J. Mol. Biol. 33, 609-623.
- [3] Weinberg, R.A. and Penman, S. (1968) J. Mol. Biol. 38, 289-304.
- [4] Busch, H. and Smetana, K. (1970) in: The Nucleolus, pp. 211–284, Academic Press, New York.
- [5] Maden, B.E.H. and Robertson, J.S. (1974) J. Mol. Biol. 87, 227-255.
- [6] Nazar, R.N., Owens, T.W., Sitz, T.O. and Busch, H. (1975) J. Biol. Chem. 250, 2475—2481.
- [7] Veldman, G.M., Brand, R.C., Klootwijk, J. and Planta, R.J. (1980) Nucleic Acids Res. 8, 2907—2920.
- [8] Wildeman, A.G. and Nazar, R.N. (1981) J. Biol. Chem. 256, 5675-5682.
- [9] Speirs, J. and Birnstiel, M.L. (1974) J. Mol. Biol. 87, 237—256.
- [10] Dawid, I.B. and Wellauer, P.K. (1976) Cell 8, 443–448.
- [11] Bell, G.I., DeGennaro, L.J., Gelfand, D.H., Bishop, R.J., Valenzuela, P. and Rutter, W.J. (1977) J. Biol. Chem. 252, 8118—8125.
- [12] Nazar, R.N. (1980) FEBS Lett. 119, 212-214.
- [13] Georgiev, O.I., Nikolaev, N., Hadjiolov, A.A., Skryabin, K.G., Zakharyev, V.M. and Bayev, A.A. (1981) Nucleic Acids Res. 9, 6953–6958.
- [14] Branlant, C., Krol, A., Machatt, M.A. and Ebel, J.P. (1979) FEBS Lett. 107, 177-181.
- [15] Brosius, J., Dull, T.J. and Noller, H.F. (1980) Proc. Natl. Acad. Sci. USA 77, 201–204.